

: 2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963 - A

CONTRACTOR OF THE PROPERTY OF

AD-A160 205

E

Memory Conflict Simulation of a Many-Processor CRAY Architecture. Part I: A CRAY X-MP Study

D. A. Calahan Ken Elliott, III

March 1, 1985

Sponsored by
Los Alamos National Laboratory
Air Force Office of Scientific Research

Supercomputer Algorithm Research Laboratory

Department of Electrical Engineering & Computer Science

	REPORT DOCUME	NTATION PAGE	E			
18. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS				
Unclassified 2. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
22. SECONITY CEASSIFICATION AUTHORITY						
26. DECLASSIFICATION/DOWNGRADING SCHED	ULE	Approved for public release; distribution unlimited				
N/A						
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR - TR - \$\frac{25}{25} = 0.765				
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONITORING ORGANIZATION				
University of Michigan		AFOSR				
6c. ADDRESS (City, State and ZIP Code)	.tau Caianaa	7b. ADDRESS (City, State and ZIP Code)				
Dept. of Elec. Eng. and Computer Science Ann Arbor, MI 48109		Bldg. 410 Bolling AFB, D.C. 20332				
8. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER	
AFOSR	NM	AF0SR-84-0	096			
8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUNDING NOS.				
Bldg. 410 Bolling AFB, D.C. 20332-6448		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.	
		61102F	2304	A3		
11. TITLE (Include Security Classification) Memory		 	A C	D CA . d		
Simulation of a Many-Processo	or CRAY Architec	ture. Part I:	A Cray X-N	P Study		
D. A. Calahan and K. B. Ellit	.00. III					
13a. TYPE OF REPORT 13b, TIME C		14. DATE OF REPOR	RT (Yr., Mo., Day)	15. PAGE CO	UNT	
Interim FROM 16. SUPPLEMENTARY NOTATION	то	1 March 19	85	45		
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES	18. SUBJECT TERMS (Co	ontinue on reverse if ne	cessary and identi	ify by block number)		
FIELD GROUP SUB. GR.	Linear algebr	a. Supercompu	ters Compu	iter memories		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Emedi digebi	a, supercompu	cers, compe	icinor res		
19. ABSTRACT (Continue on reverse if necessary and	l identify by block number	' Multipr	12 (5 NA P			
The performance of three Fortran kernels and two assembly kernels (including two linear algebra kernels) is simulated for a CRAY X-MP architecture of upito 16						
processors and 256 memory banks. The effects of variations on the X-MP-2 memory conflict resolution protocol, including X-MP-4 protocol, are studied. Island legues of variations on the X-MP-2 memory conflict resolution protocol, including X-MP-4 protocol, are studied. Island legues of variations on the X-MP-2 memory conflict resolution protocol, including X-MP-4 protocol, are studied.						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SECURITY CLASSIFICATION				
UNCLASSIFIED/UNLIMITED 🖾 SAME AS RPT. 🖾 DTIC USERS 🗆		Unclassifie	d			
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE NUMBER 22c OFFICE SYMBOL (Include Area Code)		OL		
John P. Thomas, Jr., Capt, USAF		(202)767-5	026	NM		

Memory Conflict Simulation of a

Many-Processor CRAY Architecture.

Part I: A CRAY X-MP Study

D. A. Calahan
Ken Elliott, III

March 1, 1985

Supported by

Los Alamos National Laboratory

and

Air Force Office of Scientific Research

Under Grant 84-0096

Abstract

The performance of three Fortran kernels and two CAL kernels is simulated for a CRAY X-MP architecture of up to 16 processors and 256 memory banks. The effects of variations on the X-MP-2 memory conflict resolution protocol, including X-MP-4 protocol, are studied.

Acknowledgements

The cooperation of Chris Hsiung and Al Schiffleger of Cray Research, Inc., was indispensible in resolving intricacies of the XMP memory system. The assistance of Jim Arnold and Ken Stevens of NASA/ARC and of Carl Diem of CRI in providing XMP access is also acknowledged.

Simulator Availability

The XMP simulator was developed using private resources and is proprietary to Professor Calahan. Because it contains information restricted by CRI, access is also restricted.

TABLE OF CONTENTS

	PA	GE
I.	INTRODUCTION	1
II.	HARDWARE REVIEW	2
	A. INTRODUCTION	2 2 4
	C. A-MP-2M CONFLICT RESOLUTION	*
III.	SIMULATION STUDIES	5
	B. THE EXPERIMENTS	5
		5 9
	1. Introduction	9 3
	3. Section Conflicts	4
-	 b. Steady state section conflicts	1
	4. Effects of Section Design Parameters	5
IV.	EVALUATION OF CONFLICT RESOLUTION PROTOCOLS	
	A. INTRODUCTION B. AGGRAGATE PERFORMANCE	4 4 7
REFER	ENCES	
	DIX A. EXPERIMENT DESCRIPTION	0

I. INTRODUCTION

Research involving efficient use of commercial multiprocessor scientific architectures such as the CRAY X-MP is presently focused on algorithmic decomposition of problems into large concurrent tasks. Early evidence indicates that if the number of processors (*p) is small (say 2 < p < 16) many problems can be decomposed into such large tasks that the speedup achieved is nearly equal to p [1][2]

At this high efficiency, a heretofore second-order effect may begin to develop importance, namely, the interference of reads and writes attempting to simultaneously access shared memory resources (memory banks, sections, etc). As p increases from the present 2 and 4 to 8, 16, and beyond, increasing the number of banks correspondingly not only increases the read/write time - for conflict checking - but also imposes severe problems in high-speed chip and memory organization.

Recent related studies have examined this problem with real codes and a generic class of processors [3], and for the CRAY X-MP [5] with random memory fetches to gain insight into the effects of various conflict protocols on access delays.

In this report, the mechanisms which account for the delay of memory accesses is studied with the aid of an instruction-level timing simulator for the CRAY X-MP family of processors. The accesses associated with running Fortran and assembly codes on an MP of up to 16 processors are studied using simulator instrumentaion which records delay and other information.

Projections are made which indicate that the X-MP-4 conflict resolution protocol, if used with 8 and 16 processors, creates significantly longer access delays than the X-MP-2 protocol.

In a companion report [8], the separate question of the effects of access delays on algorithms is studied, and conflict-resistant algorithms are proposed.

II. HARDWARE REVIEW

A. INTRODUCTION

والمناهب المناول والمناول المناول والمناهب والمناول والمناول والمناول المناول المناول والمناول والمناو

Although certain definitions and observations may be appropriate to other classes of multiprocessors, this study is most directed at vector multiprocessors such as the CRAY X-MP where shared memory access rates are high for typical scientific vector codes. Indeed the motivation for this study requires some knowledge of the X-MP organization and operation. This will be reviewed below; more related discussion is given in [5] and [6].

B. X-MP-2 MEMORY AND CONFLICT RESOLUTION

Figure 1 shows the shared memory organization of the X-MP-2, the two processor X-MP extended to p processors in the simulator. For each processor, every fourth bank is accessed through the same section; with p processors, there are 4 p sections. Conflicts occur at the bank or section level, as follows:

Bank-Busy conflict - The Bank Busy conflict is caused by any port within or between CPUs requesting a bank currently in a reference cycle. Resolution of this conflict occurs when the bank cycle is complete. Hold reference because of a Bank Busy conflict is 1, 2, or 3 CPs.

Simultaneous Bank conflict - The Simultaneous Bank conflict is caused by two or more ports in different CPUs requesting the same bank. Resolution of this conflict is based on a priority (see below). Hold reference is a 1 CP because of a Simultaneous Bank conflict. A Bank Busy conflict always follows a Simultaneous Bank conflict.

Section conflict - The Section conflict is caused by two or more ports in the same CPU requesting any bank in the same section. Resolution of this conflict is based on a priority, the Bank Busy conflict, and Simultaneous Bank conflict. The highest priority port with no Bank Busy conflict and no Simultaneous Bank conflict is allowed to proceed, all other ports involved in this conflict hold (see below). Hold reference is 1 CP because of a Section conflict.

Figure 1. Simulated CRAY X-MP memory organization

When these rules fail to resolve a conflict, the vector stride and instruction issue time are utilized to establish priority [6].

Extensions of the buffer fetch reservation protocol to 16 processors are discussed later.

C. X-MP-2M CONFLICT RESOLUTION

The X-MP-4 resolution protocol has two major differences from the X-MP-2. To evaluate the effects of one of these, an intermediate (hypothetical) processor has been simulated, the X-MP-2M (M for modified). The second difference will be studied in a future report.

In the X-MP-2M, the sections are numbered differently from the X-MP-2. In the X-MP-2, bank #b is in section number s = mod(b,4). In the X-MP-2M, bank #b is in section number s = mod(b/4,4). This groups banks in fours, where each group of 4 belongs to one of four sections. It has been shown independently in [5] that this avoids certain catastrophic conflict patterns associated with the X-MP-2.

III. SIMULATION STUDIES

A. THE SIMULATOR

An instruction-level simulator produces numerical and timing information for the X-MP-2, the X-MP-2M, and the X-MP-4. The general timing accuracy of the X-MP-2 simulator is .2% for a uniprocessor and 1.3% for 2-processor hardware. Codes of read and write instructions only are exact with conflicts. Documentation of this concurrence is given in Appendix B. The X-MP-4 simulator does not incorporate several minor timing differences of the X-MP-4 hardware vis-a-vis the X-MP-2; its timing accuracy has not been validated at this writing.

B. THE EXPERIMENTS

A number of parameters were involved in this simulation study.

- (a) Codes ranged over three Fortran-derived and two CAL codes (see Appendix A).
- (b) Processors ranged from 1 to 16.
- (c) Banks ranged from 16 to 256; the ratio

(d) Bank conflict protocols of the X-MP-2, X-MP-2M, and X-MP-4 were studied.

The runs will be indicated by the nomenclature of Table 1.

In these experiments, nearly <u>all vectors had a length (VL) of</u>
64 and a stride of unity. This will be assumed in all analyses.

C. DELAY DEFINITION AND SIMULATION

A unit stride vector access is depicted in the memory utilization map of Figure 2, which displays the reservations

Conflict protocol-

2 : X-MP-2

2M : X-MP-2M

Code

MUL1: medium access Fortran matrix multiply

MUL2: high access Fortran matrix multiply

MUL3: low access CAL matrix multiply

RAN: high access random CAL read/write only

FFT: multiple (64) 8-point FFT's

CFD: fluid dynamics kernel

Table 1. Experiment designations

```
      818283848586878889181112131+151817181928212223242525272829383132333435363738394041424344454647484950515253545556575859686152535455

      R0
      K1K1
      instruction G
      936363
      J2J2

      R0R8
      K1K1K1
      instruction G
      936363
      J2J2J2

      R0R8F8
      K1K1K1
      processor 3
      636363363J2J2J2J2

      R0R8F8
      K1K1K1K1
      CP 5443
      536363363J2J2J2J2

54.4
5445
544;
                                                                                                                                                          .51.51.66585868
51.59585888
                                                                                             K1K1K1K1
                                   Balangaga
وسدو
                                                                                                KIKIKIKI
                                       -
44.4
                                         Pararero
Foreroro
                                                                                                                                                                63636363J2J2J2J
                                                                                                   K1K1K1K1
                                                                                                                                                                   RIKIKIKI
KIKIKIKI
                                                RACASASS
                                                                                                             K1K1K1K1
+53
                                                                                                                                                                            .8
Frene
Arenere
Ferenere
Renerere
Renerere
Renerere
Renerere
                                                                                                               K1K1K1K1
                                                                                                                   KIKIKIKI
                                                                                                                      K1K1K1K1
5456|
5457|J2 ← scalær
5458|J2
5459|J2
                                                                                                                         KIKIKIKI
                                                                      ARB
KORORO
RORORORO
RORORORO
RORORORO
RORORO
ROF
                                                                                                                           KIKIKIKI
KIKIKIKI
                                                                                                                                                                                               292929
292929
                                                                                                                                  K1K1K1K1
 5460:32
                                                                                                                                     KIKIKIKI
 5461163
                                                                                                                                                                                                      6363
63
                                                                                                                                        KIKIKIKI
                                                                                      ARO
ABRORO
RORORORO
RORORORO
RORORORO
RORORORO
RORORORO
RORORO
RORORO
RORORO
RORORO
RORORO
RORORO
RORO
 546216372
                                                                                                                                           KIKIKIKI
 54631637272
                                                                                    RORORORO
                                                                                                                                              K1K1K1K1
 5464163727272
5464163Y2Y2Y2
5465, Y2Y2Y2Y2
54661 63ZY2Y2Y2
54671 63G3Y2Y2Y2Y2
54681 53G3G3Y2Y2Y2Y2
54681 53G3G3Y2Y2Y2Y2
                                                                                                                                                  K1K1K1K1
                                                                                                                                                     KIKIKIKI
                                                                                                                                                        KIKIKIKI
                                                                                                                                                           K1K1K1K1
                                                                                                                                                              KIKIKIKI
54691
54781
54711
          K1K1K1K1
                                                                                                                                                                    KIKIKIKI
                                                                                                                                                                       KIKIKIKI
                    63636363Y2Y2Y2Y2
63636363Y2Y2Y2Y2
 54721
                                                                                                                                                                          K1K1K1K1
 54731
                         363636312121212

63636363121221212

63636363121212122

63636363121212122

63636363121212122

63636363121212122

636363631212121212222
                                                                                                             1810
                                                                                                                                                                             K1K1K1K1
 54741
54751
                                                                                                                                                                                 K1K1K1k1
                                                                                                             BIGIGI
                                                                                                                                                                                    K1K1K1K1
                                                                                                             10101010
 54761
                                                                                                                                                                                       KIKIKIKI
                                                                                                                10101010
 54771
                                                                                                                                                                                          KIKIKIKI
                                                                                                                    10101010
 54781
                                                                                                                                                                                             KIKIKIKI
                                                                                                                       10101010
 54791
                                                                                                                                                                                                KIKIKIKI
                                                                                                                          10101010
                                             63636363Y2Y2Y2Y2
 54801
                                                                                                                             10101010
                                                                                                                                                                                                   K1K1K1
                                                5481 'K1
                                                                                                                                                                                                      K1K1
                                                                                                                                10101010
 54821K1K1
                                                                                                                                   ISISISIS
 5483 K1K1K1
                                                                                                                                      10101010
                                                         63636363Y2Y2Y2Y2
 5484 K1K1K1K1K1
                                                                                                                                         10101010
                                                            63636363Y2Y2Y2Y2
 54851 KIKIKIKI
                                                               363636372Y2Y2Y2
63636363Y2Y2Y2Y2
63636363Y2Y2Y2Y2
6363636363Y2Y2Y2Y2
63636363Y2Y2Y2Y2
63636363Y2Y2Y2Y2
63636363Y2Y2Y2Y2
                                                                                                                                            10101010
 54861
               KIKIKIKI
                                                                                                                                               10101010
 54871
                  KIKIKIKI
                                                                                                                                                   10101010
                     K1K1K1K1
 54881
                                                                                                                                                      19191919
 54891
                        K1K1K1K1
                           KIKIKIKI
KIKIKIKI
                                                                                                                                                         10101019
 54301
54911
                                                                                                                                                            10101010
                                                                                                                                                               10101010
                                 KIKIKIKI
                                                                                  63636363Y2Y2Y2Y2
 54921
                                                                                    10101010
  54931
                                     K1K1K1K1
                                                                                                                                                                     10101010
                                       KIKIKIKI
 54941
                                                                                                                                                                        10101010
  54951
                                           K1K1K1K1
                                                                                                                                                                           10101010
                                              KIKIKIKI
 54961
                                                                                                                                                                              10101010
                                                 KIKIKIKI
                                                                                                                                last access
  54971
                                                                                                                                                                                  19191919
                                                   KIKIKI
KIKI
 54981
54991
                                                                                                                                                of G3
                                                                                                                                                                                    19191919
                                                                                                                    ZYZYZYZY
                                                                                                                                           CP 5497
 55001
5501
5502
                                                                                                                       Y2Y2Y2Y2
                                                                                                                                                                                       10101010
                                                          K1
                                                                                                                                                                                          10101010
5310101010
53 10101010
                                                                                                                          45454545
45454545
45454545
                                                                                                                                      45,
45454545
45454545
45454545
45454545
54545
545
545
745
                                                                                                                                                               scalars
                                                              aiaı
  55031
                                                                                                                                                                                           53V3
53V3
                                                                                                                                                                                                  101010
                                                                                                                                   72424245
                                                             GIGIGI
  5584118
                                                                                                                                                                                                       9.61
6.
  558511010
55861101010
                                                              01010101
                                                                01010101
                                                                    01010101
  5507 | 10101010
5508 | 101010
                                                                      01010101
           19191919
                                                                                                                                                                              03
03
03E3
03E3
E3F3
E3F3
                                                                         01010101
  55091
55101
               10101010
                                                                                                                                                      2727272
27272727
                  61616161
61616161
                                                                            01010101
                                                                                01010101
  35111
                                                                                                                                                             45454545
  5512
                                                                                   01010101
                        10101010
                                                                                                                                                                454545A5
454545A5
                                                                                      01010101
                            10101010
                                                                                         01010101
                               10101010
                                                                                                                                                                      24243A5
                                                                                             01010101
                                  10101010
```

Figure 2. Memory utilization map

```
MEAN = 3.9
STD = 3.3
                                            MUL1.4.64.2
                                                                    3.3
                MEAN = 2.7
                                            % 17
MUL1.1.16.2
                                                     X
                STD = 2.5
                                               16
                                                    5X
    34 3 3
                                               15
                                                    XX
% 33 X X
                                                    XX1
                                               14
                                               13 7 XXX
    32 X X
                                               12 'X XXX
                                               11 X XXX
    10 X X
                                               10 X1XXX5
      XX
                                                9 XXXXXXX
    8 X X
                                                8 XXXXXXX
    7 X X
                                                7 *****
     6 X X
                                                P XXXXXXX
    5 X X
                                                5 XXXXXXXO
     4 X X
                                                4 XXXXXXXX
     3 X X
             X
                                                3 XXXXXXXX 40
     2 X X
                                                2 XXXXXXXXX XX2
                                                1 XXXXXXXXXXXXXXX440000404
     1 XOXOOOX
                                                            11111111112222222222
       0123456789
                                                  012345678901234567890123456789
          DELAY (CLOCKS)
                                                     DELAY (CLOCKS)
                                              (c) 4 processor
  (a) l processor
MUL1.2.32.2
               MEAN = 2.0
                STD =
   45 8
                                            MUL1.16.256.2
                                                           MEAN = 3.2
STD = 3.2
% 44 X
                                           % 24 X
   17 x 2 ____ read as
   16 X X
                 16.2 %
   15 X X
                                               15 X 5
   14 X X
                                               14 X 1X
   13 X X
                                               13 X XX
   12 X X
                                               12 X XX
   11 X X
                                               11 X2XX
   10 X X
          XX
                                              10 XXXXS
   9 X X
         XX
                                               9 XXXXX
   B X X XX
                                               8 XXXXX 6
   7 X7X XX
                                               7 XXXXXXX
   6 XXX 7XX
                                               6 XXXXXXX
   S XXX8XXX
                                               S XXXXXXX
   4 XXXXXXX
                                               4 XXXXXXXX
   3 XXXXXXX
                                               3 XXXXXXXXA66
   2 XXXXXXX
                                               2 XXXXXXXXXX43
   1 XXXXXXX
                                               1 XXXXXXXXXXXXX333221101
                                                           11111111112222222222
    0123456789
                                                012345678901234567890123456789
        DELAY (CLOCKS)
                                                    DELAY (CLOCKS)
                                               (d) 16 processor
  (b) 2 processor
```

AND THE PROPERTY OF THE PROPER

Figure 3. Display of delay granularity as a function of the number of processors.

```
216:H3H3
                 01010101
                                                                           M3M3M3M3
217:H3H3H3
                  01010101
                                                                             M3M3M3M3
218: H3H3H3H3
                    31010101
                                                                              N3N3N3N3
219:K1H3H3H3H3
                      01010101
                                                                                M3M3M3M3
220:K1K1H3H3H3H3H3
                       01010101
                                                                                  M3M3M3M3
221:K1K1K1H3H3H3
                         010101
                                                                                   M3M3M3
222;K1K1K1K1H3H3
                                                                                     M3M3
                                           buffer fetch from P2
223: KIKIKIKIH3
                                                                                       H3
224:
      KIKIKIKI
                 W2W2W2W2W2W2W2W2
225:
        K1K1K1K1 W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2
                                                                               M3 interrupted
2261
          P3 paired with P2
227:
            228:
             K1K1
                              2291<sub>K1</sub>
                                           W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2
230: Continues KI
                                                        W2W2W2W2W2W2W2W2W2
                                                                                        M3
232:
             H3H3K1K1
                              01
                                                                                        M3H3
233:
             H3H3K1K1K1
                              0101
                                                                                        M3H3H3
234:
             H3H3K1K1K1K1
                              Q1Q1Q1
                                                                                        M3M3M3M3
235:
               H3H3K1K1K1K1
                              01010101
                                                                                          M3M3M3M3
2361
                 H3H3K1K1K1K1
                               01010101
                                                                                           M3M3M3M3
2371
                 H3H3H3K1K1K1K1
                                 01010101
                                                                                             M3M3M3M3
2381
                 H3H3H3H3K1K1K1K1K1
                                                                                               M3M3M3M
                  H3H3H3H3K1K1K1K1K1
239:
                                                                                                 M3M3M
                                    01010101
240:
                    H3H3H3H3K1K1K1K1
                                      01010101
                                                                                                  M3H
241:
                     H3H3H3H3K1K1K1K1
                                        01010101
                                                                                                    Ħ
242:
                       H3H3H3H3K1K1K1K1
                                         01010101
2431
                         H3H3H3H3K1K1K1K1
                                           01010101
244:N3
                          H2H2H3H3K1K1K1K1
                                             01010101
                            H3H3H3H3K1K1K1K1K1
245: M3M3
                                              01010101
246: M3M3M3
                              H3H3H3H3K1K1K1K1K1
                                                01010101
247: M3M3M3M3
                               H3H3H3H3K1K1K1K1
                                                  01010101
248: M3M3M3
                                 H3H3H3 K1K1K1
                                                   010101
249:
      M3M3
                                   H3H3
                                         KIKI
                                                     0101
250:
        M3
                                                       Q1 ,
                                           K1
251:F0F0F0F0F0F0F0F0
                                                               buffer fetch from PO
252:F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
Ql interrupted
Pl paired with PO
255:
                FOFOFOFOFOFOFOFOFOFOFOFOFO
2561
257:
                                           FOFOFOFOFOFOFO
258:
          Ħ3
                                      H3
                                             K1
                                                        21
          M3M3
259:
                                      H3H3
                                             KIKI
                                                        0101
          M3M3M3
260!
                                      H3H3H3 K1K1K1
                                                        010101
          M3M3M3M3
261:
                                      H3H3H3H3K1K1K1K1
                                                        01010101
2621
           M3M3M3M3
                                        H3H3H3H3K1K1K1K1
                                                          01010101
263!
             M3M3M3M3
                                         H3H3H3H3K1K1K1K1
                                                            91919191
2441
               M3M3M3M3
                                           H3H3H3H3K1K1K1K1
                                             H3H3H3H3K1K1K1K1K1
2651
                M3M3M3M3
                                              H3H3H3H3K1K1K1K1K1
2661
                  M3M3M3M3
2671
                    M3M3M3M3
                                                H3H3H3H3K1K1K1K1
                                                                  01010101
2681
                     M3M3M3M3
                                                  H3H3H3H3K1K1K1K1
                                                                    01010101
```

Figure 4a. Memory utilization map with buffer fetches

placed on memory banks at each CP. The first element of a 50-length vector is accessed in memory at CP = 5443 and reserves the bank for 4 CP's. The last element is accessed at CP = 5497.

Define

 T_p = time of attempted access of first vector element

 T_L = time of access of last vector element where times are measured in CP's. Then define the access delay

$$D_{ac} = T_F - T_L - VL + 1$$

 ${\bf D}_{{f ac}}$ is equal to 4 for the above case. The same definition applies to vector reads and writes.

Simulation of only the conflict resolution protocol of any of the CRAY family of processors is straightforward for sequences of memory read and write instructions only. One can then test the statistical variation of access delay with reads and writes distributed (for example) uniformly across the banks [5].

However, implementation of such protocol in a general instruction-level simulator is more complicated. Among other problems, one must accommodate for the effects of access delays on instructions involving these accesses as operands or results. Thus, an entire "chain" of instructions must be held if a read or write is involved.

Two advantages result from implementation in a general simulator.

- (a) The access delays associated with actual codes can be determined; not only may these have nonuniform bank access distributions but (static) memory utilization will vary with the code (see Appendix A).
- (b) Algorithm delay the timing overhead in total code execution resulting from access delays can be

measured. This is discussed in [8], where it is shown that, although access delay and algorithm delay may apparently be related by rules of thumb, algorithms can be designed to have a low sensitivity to even large access delays.

D. DELAY DISTRIBUTION FUNCTIONS

The simulator can be instrumented to record D_{ac} for each access. Over an entire simulation, these can be normalized as distribution functions, such that the functional value for each delay is the fraction of its occurrence relative to all accesses, expressed as a %. This will be termed a DDF (delay distribution function).

Among other uses of DDF's to be studied below, they can demonstrate the granularity of the values a delay may assume, as a function of the number of processors. In Figure 3a, for example, a uniprocessor matrix multiply incurs only three delays (0, 2, and 6 CP). However, as the number of processors increases, a much smoother DDF is observed.

- E. OF GINS OF ACCESS DELAY
- 1. Introduction

In the process of simulating hundreds of combinations of codes, conflict protocols, and numbers of banks and processors, examples have been found that accent the major sources of delay. These will be illustrated with the simulator instrumentation. Their significance to individual runs will also be evaluated; their importance to aggragate performance will be considered in Section IV.

Í

Figure 4b. Buffer fetch analysis

```
67 X
  5 X
                XXX
   4 X
   3 X 9 9
                XXX9
   2 X4X4X 44
                XXXX4
   11111111112222222222
    012345678901234567890123456789
       DELAY (CLOCKS)
    (a) 16 bank
CFD.4.64.2
             STD =
  48 5
 47 X
  10 X
               --- 10-clock
   φX
   B X 4
                   buffer fetch
   7 X X8
   6 XZXX
```

X11

DELAY (CLOCKS)

(b) 64 bank

1 XXXXXXXXXXXXXXXXX24468X262202

012345678901234567890123456789

1111111111222222222

2 XXXXXXXXCCXXXXQ9

MEAN = 4.2 7.4

STD =

CFD.1.16.2

48 1

5 XXXX 4 XXXXX 3 XXXXX93 Figure 5. Illustration of buffer fetch delays

2. Effect of buffer fetches

In extending the X-MP-2 to more processors, the instruction buffer fetch protocol of the X-MP-4 is adapted. Here, the processors are "paired", so 8 data ports are available for a fetch. A reservation is placed on all 32 banks that will be referenced during the fetch, and all references made by the CPU's that form the "pair" are held. The references for all other CPU's, as long as they do not access the banks used for the fetch, are allowed to proceed. Two examples are shown in Figure 4a. The reservation on the banks is for 7 CP (until all banks involved in the fetch have cycled). This results in a 10-clock minimum delay in any access interrupted by a buffer fetch. With 16 banks, the lowest number simulated, pairing is not possible and a 14-clock delay results. The DDF's for CFD.4.64.2 and CFD.1.16.2 simulations are shown in Figure 5. The 10-clock delay peak is clearly shown in Figure 5b; in Figure 5a, the delays increase abruptly at 14 clocks.

From knowledge of the number of banks (NB), the bank-width (BW) of an instruction fetch, and the number of fetches (NF) over the execution time (T) of a run, an estimate may be made of the fraction (f_T) of interrupted vector accesses.

A single interruption will occur if a vector is initiated, without interference from other vectors, in the trapezoidal area illustrated in Figure 4b. This area is (BW)(VL-1) bank-clocks; the total area of hazard with NF fetches in (NF)(BW)(VL-1), from a area of (NB)(T) bank-clocks for the total simulation. The fraction of vectors interrupted by a buffer fetch is therefore

$$f_I \sim \frac{(NF)(BW)(VL)}{(NB)(T)}$$

$$= \frac{(P)(NFP)(BW)(VL)}{(NB)(T)}$$

$$= \frac{(NFP)(BW)(VL)}{(R_{bp})(T)}$$
 (2)

where P is the number of processors, NFP is the number of buffer fetches per processor and $R_{\rm bp}$ is the ratio of banks to processors. For the CFD code, NFP = 6 and T = 6413 clocks; with BW = 32, VL = 64, and $R_{\rm bp}$ = 16,

$$f_{I} = \frac{(6)(32)(64)}{(16)(6413)}$$
= .12 (3)

This fraction is supported by the DDF's of the associated CFD code of Figure 6, where the ratios of (10-clock delays)/(0-clock delays) are .19, .14, and .15 for p = 4,8 and 16 processors respectively. These latter ratios will normally be higher than predicted by Eq. (2), since some 10-clock delays will occur even without buffer fetches. The DDF's of Figure 6 show a small increase for 20-clock delays as well, indicating the fraction of reads which encounter two buffer fetches.

The average access delay introduced by these fetches (\overline{D}_{acbf}) is simply $10f_I$ or 1.2 clocks in the above case.

- 3. Section conflicts
- a. Introduction

In a code executing from a processor with more than one

```
MEAN = 3.8
CFD. 4.64.2
                        5.5
                STD =
   47 X
   10 X
    8 X 4
    7 X X8
    P XZXX
    S XXXX
    A XXXXX
    3 XXXXX93
                X11
    2 XXXXXXX202XXX09
    1 XXXXXXXXXXXXXXXXX4468X262202
                1111111111222222222
      012345678901234567890123456789
         DELAY (CLOCKS)
     (a) 4 processor
CFD.8.128.2
                MEAN = 3.2
                STD =
    9 X83
    8 XXX
    7 XXX
    6 XXX
    5 XXXB
    4 XXXX7
    3 XXXXX2
                XX11
    2 XXXXXX81
    1 XXXXXXX93XXX851641741312220011111000001
                 11111111112222222223333333333444444444
      01234567890123456789012345678901234567890123456789
          DELAY (CLOCKS)
     (b) 8 processor
 CFD. 16.256.2
                 STD =
    48 1
   47 X
     9 X3
     8 XX5
     7 XXX4
     6 XXXX
     5 XXXX
     4 XXXX9
     3 XXXXX31
                X2
     2 XXXXXXX 2 XX541
     1 XXXXXXXBX9XXXXX63542X5532E111E21111EEE0EE0000000E
                 11111111112222222223333333333444444444
       01234567890123456789012345678901234567890123456789
          DELAY (CLOCKS)
     (c) 16 processor
```

Figure 6. DDF's for 4,8, and 16-processor executions of CFD code, with $R_{\rm DP}$ = 16.

これは日本の人の人のないないとして、人の人のこ

active port, there is a potential for conflicts between ports at the section level. These occur either as (a) steady-state conflicts or (b) startup conflicts.

Among the factors likely to influence the number of section conflicts is the <u>number</u> of active ports. A code which uses only one active port may suffer bank conflicts, but not section conflicts; this may result in less access delay than a code with less total memory traffic shared between two or three ports.

The simulator has a capability to monitor dynamically the number of simultaneous accesses from each processor. The fractions of total run times that 0, 1, 2, and 3 ports are busy n a typical processor is given in Appendix A.

b. Steady-state section conflicts

It has been observed in [5] that in the X-MP-2, a steady state section conflict between accesses from a CPU can occur when both ports vie for neighboring memory banks. An example is shown in Figure 7 between instructions A3 and Q3, where every fourth access is delayed by one clock. This can create a worst-case delay of 16 clocks in a 64-length unit-stride vector access. With X-MP-2M protocol, this phenomena does not occur.

The relative importance of section renumbering to eliminate this effect is depicted in Figure 8a-b for CFD.2.32.2 and CFD.2.32.2M simulations. The former shows a cluster of delays between 13 and 16 clocks not present in the latter. The mean delay is reduced from 4.6 to 3.5 by section renumbering. Note that this effect is not evident in the DDF of CFD.16.256.2 of Figure 8c, even with the disadvantageous numbering. The reason is

```
62
6262
626262
63636363
  03030303
    62626363
     63626363
       03030303
         03030303A3
           Q3Q3Q3A3A3
             Q3Q3A3A3A3
               QJAJAJAJA3
                Q3A3A3A3
                 @3@3A3A3A3
                 Q3Q3Q3A3A3A3
                 Q3Q3Q3Q3A3A3A3
                                         Q3 & A3 in steady-state
                  Q3Q3Q3A3A3A3A3
                                          conflict; 1 of every 4
                    Q3Q3Q3A3A3A3
                                         accesses delayed by 1 CP
                      Q3Q3Q3A3A3A3
                        Q3Q3Q3A3A3A3
                        Q3Q3Q3Q3A3A3A3
                          Q3Q3Q3A3A3A3A3
                            Q3Q3Q3A3A3A3
                             Q3Q3Q3A3A3A3
                               Q3Q3Q3A3A3A3
                               Q3Q3Q3Q3A3A3A3
                                 Q3Q3Q3A3A3A3A3
                                   Q3Q3Q3A3A3A3
                                     Q3Q3Q3A3A3A3
                                       Q3Q3Q3A3A3A3
                                       EAEAEAEGEGEGEG
```

Figure 7. Illustration of steady-state conflict with X-MP-2 section numbering (also see [5]).

```
CFD. 2.32.2
             MEAN = 4.6
              STD =
% 51 X
                          steady-state delay cluster
    6 X 8
    5 X X3 X
    4 x4xx x
    3 XXXX 4X4 X
                 X X
    2 XXXX9XXXO XO XOXO 9X O 4
    11111111111222222222
     012345678901234567890123456789
        DELAY (CLOCKS)
(a) X-MP-2; 2 processors
CFD. 2. 32.2M
              MEAN = 3.5
              STD =
   55 3
% 54 x
    7 X
    6 X 8
    S XX3 X
    4 xxx44x
              8
    3 XXXXXX9
    111111111122222222223333333333
     0123456789012345678901234567890123456789
        DELAY (CLOCKS)
(b) X-MP-2M; 2 processors
 CFD.16.256.2
              MEAN = 3.9
              STD #
   48 1
 % 47 X
    9 X3
    8 XX5
    7 xxx4
    6 XXXX
    5 XXXX
    4 XXXX9
    3 XXXXX31
              X2
    2 XXXXXXX 2 XX541
    1 XXXXXXX8X9XXXXX63542X5532E111E21111EEE0EE00000000E
              01234567890123456789012345678901234567890123456789
        DELAY (CLOCKS)
(c) X-MP-2; 16 processors; 256 banks
```

Figure 8. Effect of steady-state conflict with different protocols and different number of processors.

101 102 103 104 105 106 109 109

100

بر درا

ŗ

•

r

Example of 7-clock startup delay in uniprocessor with X-MP-2M numbering. Figure 9a.

9 10 11 12 13 14 15 (a) X-MP-2Section # Bank #

9 10 11 12 13 14 15 16... (b) X-MP-4, X-MP-2M 7 8 Section Bank #

Relation between section and bank numbering

Figure 9b.

that the probability of two accesses being in the same neighborhood with 256 banks will in general be much less than with 32 banks. This effect is therefore significant only with a small number of banks.

c. Two-port startup section conflicts

Although X-MP-2M protocol eliminates steady-state conflicts, it introduces a startup conflict phenomena not significant with X-MP-2 protocol. Figure 9a illustrates a worst case example of this conflict. Here, two ports of a processor are involved.

Instruction b is in progress at CP 100 when instruction a attempts to access bank #3. b will have priority because it is in progress so a will hold until CP 104. Because both are in Section #0, a will then start a 4-clock access (only the first clock is marked in the figure); however, on CP105 it will again conflict with b, since both are now in Section #1, causing a three clock delay in a.

An instruction \underline{b} in prioritized execution may be accessing bank 4r, 4r+1, 4r+2, or 4r+3 when instruction \underline{a} attempts to startup in any of 16 banks in sections 0, 1, 2, or 3. There are therefore $4 \times 16 = 64$ distinctive relative startup positions of \underline{a} and \underline{b} . Each produces a startup delay, which may be counted and summed to produce an average startup delay. For the X-MP-4 section numbering, this number of startup delay clocks is 112, yielding an average delay

$$\overline{D}_{ac} = \frac{112}{64}$$
= 1.75

[&]quot;Startup section conflict analysis assumes an infinite-bank memory, where only comflicts between periodic sections are accounted for; the probability of two accesses being made to the same bank is assumed zero.

clocks or 2.74% for VL=64. The corresponding delay for X-MP-2 numbering is

$D_{ac} = .25$

The same analysis which yielded the above D_{ac} can be used to evaluate the mean delay when one of two accesses, each in conflict-free steady state access, is bumped a prescribed number of clocks. Specifically, with b in prioritized execution as in Figure 9a, all 16 possible startup states of a are tested to determine which represent a conflict-free execution. For the valid states, the access of a is intentionally delayed (bumped) a prescribed number of clocks at CP100, to determine a new startuplike condition. This may result in \underline{a} being in another conflictfree access, or \underline{a} may now be in a conflict with \underline{b} , and an extra delay incurred. These delays are summed and averaged over all possible valid states of a and b; the results are shown in Table 2. For example, an access bumped by 4 clocks would, on the average, incur a total delay of 4 + 2.44 = 6.44 clocks before it reached a new steady state compatible with instruction b. The X-MP-2 protocol would produce a total delay of 4.25 clocks.

This amplification of access bumps is felt to have a major role in the relatively poor performance of the X-MP-2M and X-MP-4. This analysis illustrates the potential for disruptive transients propogating across accesses and dramatically increasing delays. Analysis of such a dynamic situation is beyond the scope of this report.

d. Three-port startup section conflicts

The last section considered pairs of instructions representing a time when two ports are active. With two ports

Pigure 10. Memory utilization map illustrating a bumped conflict.

	Extra Delay		
Bump	X-MP-2	X-MP-2M	
	protocol	protocol	
(clocks)	(clocks)	(clocks)	
0	0.	0.	
1	.25	.778	
. 2	.25	1.44	
3	.25	2.00	
4	.25	2.44	
5	.25	2.78	
6	.25	3.00	
7	.25	3.11	
8	.25	3.11	
9	.25	3.11	
10	.25	2.33	
11	.25	1.67	
12	.25	1.11	
13	.25	.67	
14	.25	.33	
15	.25	.11	
16	0.	0.	

Table 2. Extra average delay suffered by a bumped access.

active and in the steady state, if the third port were to initiate an access, it is relatively easy to show that, depending on the relative location of the first two accesses, only 2-5 banks of every 16 can accommodate a third conflict-free startup (banks 27 and 28 in Figure 11).

To evaluate startup conflict with three ports it is possible to set two instructions (\underline{a} and \underline{b}) in a conflict-free steady-state mode, and then count the delays incurred by a third instruction \underline{c} initiating an access in each of 16 banks. This is repeated for all combinations of \underline{a} and \underline{b} in a conflict-free steady state (36 rather than the 64 of the last section). A worst case example is illustrated in Figure 11, where a 14-clock delay is indicated. Overall, among $36 \times 16 = 576$ cases, a total of 2944 delay clocks are counted, for

$$\overline{D}_{ac} = \frac{2944}{576}$$

=5.11

clocks average startup delay.

4. Effects of Section Design Parameters

The above startup delay analyses for two-port and three-port accesses with X-MP-2M numbering can be performed as a function of the number of sections and the number of banks per section - both equal to 4 in the above study.

Table 3 gives the results of enumerating all combinations of instruction startups and averaging delays, as above. Three results are worthy of note.

10 11'12 13 14 15'16 17 18 19'20 21 22 23'24 25 26 27'28 29 30 31'32 33 34 35'36 37 38 39'40 41 42 43'44 45 46 47 48 Worst case startup delay with three active ports: ۵ conflict-free startup 7-clock conflict with b 7-clock conflict with a U U Sect. Bank #

r

Pigure 11.

		2-port access	3-port access
NBPS	NS	(clocks)	(clocks)
2	2	1.5	
	4	.75	4.2
	8	.38	.86
4	2	3.50	
	4	1.75	5.11
	8	.88	2.04
8	2	7.50	===
	4	3.75	11.2
	8	1.88	4.40
	16	.94	1.93
16	2	15.5	
	4	7.75	23.5
	8	3.87	9.11
	16	1.93	4.15

Table 3. Startup section delays as function of the number of sections (NS and the number of banks per section (NBPS).

(a) If the ratio

R_{bs} = # of sections (NS) # of banks per section (NBPS)

is maintained constant, both the two-port and three-port startups are relatively constant. If $R_{\rm DS}$ = 1, for example, the three-port startups of 5.11, 4.40 and 4.15 clocks are determined.

- (b) For a given NBPS, the delay decreases as the inverse in the increase in NS. This is reasonable, since no delays are encountered for additional sections.
- (c) For a given NS, the delay increases proportionately to the increase in NBPS. This is explained by the doubling of the number of delay clocks when an instruction enters a reserved double-width section.

5. Startup bank conflicts

In codes without section conflicts (e.g., one-port codes), the only possible conflicts are <u>startup</u> bank conflicts between processors. In general codes, such conflicts form a low-level conflict background which interacts principally with section startup conflicts and buffer fetches.

Define the memory utilization

U_m = total memory accesses total run time

for a uniprocessor. Each access occupies a 4-clock wide path in the memory utilization map. With NB banks, \overline{U}_{m} memory utilization per processor, and p processors, the fraction of total bank-width occupied by accesses is approximately $P_{d} = \overline{U}_{m}/R_{bp}$. For three clocks on either side of these accesses, a startup will either be delayed or will force a delay in the existing access. The probabilities associated with various delays are

The probabilities associated with various delays are

pr $(3-\operatorname{clock} \operatorname{delay}) = P_d$

pr $(3-\operatorname{clock} \operatorname{delay}) = 2P_d$

pr $(2\text{-clock delay}) = 2P_d$

pr $(1-\operatorname{clock} \operatorname{delay}) = 2P_A$

The average startup delay due to bank conflicts is computed to be

$$\overline{D}_{acbc} = \frac{16}{7} \overline{U}_{m}/R_{bp}$$
.

For typical values of R_{bp} (=8,16), this delay is significantly less than one clock. It should be noted that "one port" codes - which have no section conflicts - can have a highly regular bank conflict pattern. A version of MUL₃, which utilizes more than one port only 11% of the time and has a regular access pattern, produced the DDF pattern of Figure 12d. Note that the frequency of 4-clock and 8-clock delays dominate the frequency of other non-zero delays. Clearly, the equal-probability assumptions of the above analysis are inappropriate. Section delays appear to have a randomizing, albeit negative, effect.

```
318293848586879889191112131+15161718192921222324252627282938313232343536373839484142434445464748495851525354555657585968618283644558
43 K1 31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    )!
::2
                                                                                                                                                                                                                       ATMENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     313:3:31
91919:91
                                                                                                                                                                                                                                                                                                                                                                                                                                                         -ŠHŠHŠHŠKIKIKIKI
HZHZHZHZKIKIKIKI
                                                                                                                                                                                                                      MEMEMEN.
                                                                                                                                                                                                                                     M3M3M3M3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            31313131
31313131
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             43H3H3H3H3K1K1K1K1
                                                                                                                                                                                                                                                MEMEMENS
                                                           259
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   H3H3H3H3K1K1K1K1
                                                                                                                                                                                                                                                             MEMENEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KENENCHI
                                                                                                                                                                                                                                                                                         M3M3M3M3
                                                             -721
-731
                                                                                                                                                                                                                                                                                                    EMEMENEN
EMEMEMEN
                                                            2741
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              H3H3H3H3K1K1K1K1
                                                                                                                                                                                                                                                                                                                                M3M3M3M3
                                                            2751
2761
2771
2781
                                                                                                                                                                                                                                                                                                                                              MENENENE LO
MENENENELOLO
MENENENELOLOLO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           01010101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       01010101
                                                                                                                                                                                                                                                                                                                                                                                  M3H3L0L0L0L0
M3H3L0L0L0L0
M3H3L0L0L0L0
M3H3L0L0L0L0L0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     31919191
### A PROPERTY OF THE PROPERTY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2791
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  01010101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              01010101
                                                             2801
                                                            281 100
282 10000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               01010101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     31010101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RZR2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    01219101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0101010192R2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              010101R2R2
010101R2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         219101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.0.0.0

.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TITITITI
```

1.

```
01020304050607000918111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596861626364656
  -ārā - kiki - āigi
-ārārā kikiki - āigigi
rārārārskikiriki - gigigigi
                                                          wie'
                                                          MŽNŽNJ
    .57
                                                         M3M3M3M3
                                                                                                                                                                                        2681
2691
2701
2711
                                                               MEMEMENS
                                                                     M3N3N3N3
                                                                           *9333
*33333
*33333
  2721
2731
2741
                                                                                             M3K3K3K3
                                                                                                   KIRIBIEN
                                                                                                         N3(3)(3)(3)
N3(3)(3)(3)
N3(3)(3)(3)
N3(3)(3)(3)
  2751
                                                                                                                                                                                                                                         PASHASAKKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
H3H3H3H3KIKIKIKI GIGIGIGI
  2761
2771
2781
                                                                                                                                                                LOLOLO
 2891
2801
2811
2821
                                                                                                                                  N3N3N3N3
                                                                                                                                                                LOLOLOLO
                                                                                                                                        M3M3M3M3 LOLOLOLO
M3M3M3M3 LOLOLOLO
M3M3M3M3 LOLOLOLO
                                                                                                                                                                                                                                                                        HSHSHSHSKIKIKIKI 01010101
HSHSHSHSKIKIKIKI 01010101
                                                                                                                                                         3434343 LOLOLOLO
H3H3H3H3 LOLOLOLO
H3H3H3H3 LOLOLOLO
H3H3H3H3 LOLOLOLO
H3H3H3H3 LOLOLOLO
H3H3H3H3 LOLOLOLO
H3H3H3H3H3 LOLOLOLO
H3H3H3H3H3H3 LOLOLOLO
 2831284128512861
                                                                                                                                                                                                                                                                                    H3H3H3H3K1K1K1
                                                                                                                                                                                                                                                                                                                                            01010101
                                                                                                                                                                                                                                                                                          H3H3H3 KIKI
                                                                                                                                                                                                                                                                                                                                                  01010101
                                                                                                                                                                                                                                                                                                H3H3
                                                                                                                                                                                                                                                                                                                                                                                                         R200
R200
                                                                                                                                                                                                                                                                                                                                                        01010101
                                                                                                                                                                                                                                                                                                                                                              Ölülülül
                                                                                                                                                                                                                                                                                                                                                                                                          R200
  2871
                                                                                                                                                                                                                                                                                                                                                                    01010101
                                                                                                                                                                                        H3H3H3H3 LOLOLOLO
H3H3H3H3 LOLOLOLO
  288109
                                                                                                                                                                                                                                                                                                                                                                          01013101
                                                                                                                                                                                                                                                                                                                                                                                                          R2R2
                                                                                                                                                                                                                                                                                                                                                                                 01010101
                                                                     TITI
                                                                                                                                                                                                                                  M3N3N3
M3M3N3
M3M3N3
M3M3M3
M3M3M3M3
  2961000000
29110000000
                                                                    TITITI
                                                                                                                                                                                                                                                                                                                                                                                       91919191R2
                                                         REXETITITITI
                                                                                                                                                                                                                                                                                                                                                                                             010101R2
  2921R200000000
                                                         ITITITSXSXSX
                                                                                                                                                                                                                                                                                                                                                                                                    010101
LARAS
LARAS
LARAS
                                                        TITITITSXSXSXSX
                                                                                                                                                                                                                                                                                                                                                                                                         0101
                                                                                                                                                                                                                                                                                                                                                                                                               01
                                                                                                                                                                                                           H3H3H3H3
                                                                                                                                                                                                                                                                                                                                                                                                                ۵ĩ
                                                                                                                                                                                                                  H3H3H3H3
                                                                                                                                                                                                                                                                        LOLOLOLO
                                                                                                                                                                                                                                                                              LOLOLOLO
                                                                                                                                                                                                                        H2H3H3H3
                                                                                                                                                                                                                             H3H3H3H3
                                                                                                                                                                                                                                   EHENEN
ENEMENEN
ENEMENEN
ENEMENEN
                                                                                                                                                                                                                                                                                          LOLOLOLO
                                                                                                                                                                                                                                                                                                LOLOLOLO
                                                                                                                                                                                                                                                      H3H3H3H3
                                                                                                                                                                                                                                                                                                             LOLOLOLO
                                                                                                                                                                                                                                                            13131313
                                                                                                                                                                                                                                                                                                                   LOLOLOLO
                                                                                                                                                                                                                                                                 MENENEN
KARNENEN
KARNEN
K
                                                                                                                                                                                                                                                                                                                         LOLOLOLO
                                                                                                                                                                                                                                                                                                                              307
308
309
310
                                                                                                                                                                                                                                                                                    ENEMENEN
ENEMEMEN
                                                                                                                                                                                                                                                                                                                                           Lalalalo
                                                                                                                                                                                                                                                                                                H3H3H3H3
                                                                                                                                                                                                                                                                                                                                                       LOLOLOLO
                                                                                                                                                                                                                                                                                                       HEHEHEH
                                                                                                                                                                                                                                                                                                            3111
                                                                                                                                                                                                                                                                        6161
                                                                                                                                                                                                                                                                                                                                                                    LOLOLOLO
                                                                                                                                                                                                                                                                        616161
  3121
                                                                                                                                                                                                                                                                                                                                                                          LOLOLOLO
                                                                                                                                                                                                                                                                                                                                                                                3131
                                                                                                                                                                TTTTTTTSXSXSXSX
                                                                                                                                                                                                                                                                        616161
                                                                                                                                                                      TITITITSKSKSKSK
                                                                                                                                                                                                                                                                               616161
                                                                                                                                                                                                                                                                                                                               HEHEHEH
  3141
                                                                                                                                                                            TTTTTTTSXSXSXSX
                                                                                                                                                                                                                                                                                                                                     H3H3H3H3
  3151
                                                                                                                                                                                                                                                                                    616161
                                                                                                                                                                                                                                                                                                                                                                                             LOLOLOLO
                                                                                                                                                                                 eieieiei
eieiei
 3161L0
3171L0L0
3181L0L0L0
                                                                                                                                                                                                                                                                                                                                            H3H3H3H3
                                                                                                                                                                                                                                                                                                                                                                                                   LOLOLO
                                                                                                               RETEREUS
RERERE D3
RERE D3D3
RE D3D3D3
0003D3D3D3D3
                                                                                                                                                                                                                                                                                                                                                  N3H3H3H3
                                                                                                                                                                                                                                                                                                                                                        ENEMENE
                                                                                                                                                                                                                                                                                                 61616161
                                                                                                                                                                                                                                                                                                                                                             H3H3H3H3
  319/Lelelele
                                                                                                                                                                                                                                                                                                      61616161
                                                                 remote
                                                                                                                                                                                                                                                                                                                                                                    NEWENEN
  3201
                LOLOLOLO
                                                                                                                                                                                                           X2X2X2X2T1T1T1T1
                                                                                                                                                                                                                                                                                                             61616161
  322
                        LALALA
                                                                                                                                          D3D3D3D3
D3D3D3D3
                                                                                                                                                                                                                 X2X2X2X2T1T1T1T1
X2X2X2X2T1T1T1T1
                                                                                                                                                                                                                                                                                                                                                                          H3H3H3H3
H3H3H3H3
                                                                  section
                                                                                                                                GØ
                                                                                                                                                                                                                                                                                                                   61616161
                                                                                                                                                                                                                                                                                                                        61616161
61616161
                                    LARGE conflicts
                                                                                                                                  Ö
 323
324
                                                                                                                                 00
R200
                                                                                                                                                                                                                             XZXZXZXZTITITITI
XZXZXZXZXTITITITI
                                                                                                                                                          D3D3D3D3
                                                                                                                                                                                                                                                                                                                                                                                       13131313
                                                                                                                                                                D3D3D3D3
D3D3D3D3
                                                                                                                                                                                                                                                                                                                                                                                             HEHENEN
                                            LARAL
                                                                                                                                                                                                                                                                                                                                     61616161
                                                                                                                                 325 I N.3
                                                 Lalalate
                                                                                                                                                                                                                                         TETTETTSXSXSXSX
                                                                                                                                                                                                                                                                                                                                            61616161
                                                                                                                                                                                                                                                                                                                                                                                                   H3H3H3
  326 | N3N3
327 | N3N3N3
                                                        LOLOLOLO
                                                                                                                                                                            03030303
                                                                                                                                                                                                                                                X2X2X2X2T1T1T1T1
                                                                                                                                                                                                                                                                                                                                                  61616161
                                                                                                                                                                                 D3D3D3D3
D3D3D3D3
                                                              LOLOLOLO
                                                                                                                                                                                                                                                     X2X2X2X2TITITITI
                                                                                                                                                                                                                                                                                                                                                        61616161
                                                                                                                                                                                                                                                           X2X2X2X2T1T1T1

X2X2X2X2T1T1T1T1

X2X2X2X2T1T1T1T1

X2X2X2X2T1T1T1T1

X2X2X2X2T1T1T1T1
                                                                    LARAS
  328 | N3N3H3H3
                             ASH SHEET HERE ASH SHEET HE ASH SHEET HERE ASH SHE SHEET HERE ASH SHEET HERE ASH SHEET HERE ASH SHEET HERE ASH SHE SHEET HERE ASH SHEET HERE ASH SHEET HERE ASH SHEET HERE ASH SHE SHEET HERE ASH SHEET HERE ASH SHEET HERE ASH SHE SHEET HERE ASH SHEET HERE ASH SHE SHE SHEET HERE ASH SHE SHEET HERE ASH SHE SH
                                                                                                                                                                                                                                                                                                                                                               61616161
  3291
                   M3H3H3H3
                                                                                                                                                                                               D3D3D3D3
                                                                                                                                                                                                                                                                                                                                                                    61616161
                                                                                                                                                                                                     D303D3D3
  3301
                          H3H3H3H3
                                                                                 LOLOLOLO
                                                                                                                                                                                                                                                                                                                                                                          61616161
                                                                                                                                                                                                         D3D3D3D3
D3D3D3D3
D3D3D3D3
D3D3D3D3
                                                                                      Laaa
  3311
                                                                                                                                                                                                                                                                                                                                                                                61616161
                                                                                            REPEREREDBORDED
  3321
3331
334161
                                                                                                                                                                                                                                                                                     TITITITISXSXSXSX
                                                                                                                                                                                                                                                                                                                                                                                       61616161
                                                                                                                                                   X2X2X2X2T1T1T1T1
                                                                                                                                                                                                                                                                                                                                                                                             61616161
                                                                                                                                                                                                                                                                                                  X2X2X2X2TITITITI
                                                                                                                                                                                                                                                                                                       XZXZXZXZTITITITI
XZXZXZXZTITITITI
XZXZXZXZXTITITITI
  33516161
                                                        H3H3H3H3
                                                                                                               LOLOLOLO
                                                                                                                                                                                                                                   D.20.203
                                                                                                                    LARAS
LARAS
LARAS
 3361616161
33716161616161
3361 61616161
                                                                                                                                                                                                                                          DENTIS
                                                               HAMANANA S
                                                                    HENEMEN
HENEMEN
                                                                                                                                                                                    R2R2R2R2N#N#N#N#
                                                                                                                                                                                                                                                       TATATA A
                                                                                                                                                                                                                                                                                                                          TITITITEREXEXEX
                                                                                 H3H3H3H3
  3391
                         61616161
                                                                                                                                       LARAS
                                                                                                                                                                                         REPERENDADADADADA
                                                                                                                                                                                                                                                            U3030303
                                                                                                                                                                                                                                                                                                                                X2X2X2X2T1T1T1T1
```

7

Figure 12b. Memory utilization map with X-MP-2M protocol

Ó

```
KIKIKIKI HAHAHAHA
269
2701
271,
2721
2731
                                                                         KIKIKI H3H3H3H3
KIKIKIKI H3H3H3H3
                                                                            KIKIKIKI HEHEHEHE
                                                                                                         61010101
                                                                               KIKIKIKI HEHEHEHE
KIKIKIKI HEHEHEHE
                                                                                                            01010101
2741
                                                                                                               21010101
2761
                                                                                    KIKİKİKI
                                                                                                                 31010101
                                                                                       KIKIKIKI
                                                                                                    43H3H3H3
                                                                                                                    31319131
                                                                                                      HEHEHEHE
                                                                                          KIKIKIKI
-8
                                                                                            01010101
01010101
279!
280 1
                                                                                                                              91010191
91010191
:61
2821
2831
2841
                                                                                                                                   01010101
                                                                                                                                       01010101
2851
                                                                                                                                         01010101
                                                                                                              KIKIKIKI H3H3
KIKIKIKI H3H3
2861
287
                                                                                                                                            91919191
                                                                         131313 LOLONON
13131313 LOLONON
13131313 LOLONON
13131313 LOLONON
131313 LOLONON
1313 LOLONON
                                                                                                                                              01010101
                                                                                                                                                 91919191
2581
289104
                                                                                                                       KIKIKIKI
                                                                                               KIKIKIKI
                                                                                    131313
131313
131313
131313
131313
                                                                                                                                                         3:519101
                                                                                                    LOLOLOLO
                                                                                                                               KIKIKIKI
                                                                                                                                                            31010101
                                                                                                                                 KIKIKI
                                                                                                                                                              01010101
                                                                                                                                                                 9191919
                                                                                                            Lalalala
                                                                                                                                                                    31019101
         3051
                                                                                                         43U3U3U3
                                                                                                            03030303
23030303
                                                                                                                 บริบริบรินร
                                                                                        remote
                                                                                                                 5151
5161
3141
                                                                                        section
                                                                                                                            รับรับรับร
บริบริบริบริบ
                                                                                        conflicts
                                                                                                                 61
61
6161
6161
616161
61616
3151
                                                                                                                                    33030303
3161
                                                                                                                                      :3030303
3171
                                                                                                                                         U3U3U3U3
3181
                                                                                                                       61616161
                                                                                                                                            113U3U3U3
                                                                                                                         61616161
3191
320
321 (
322 (
                                                                                                                              6161
2231
3241
3251
3261
3271
                                                                                                                                 1918 K
                                                                                                                                    G161
                                                            72R2D10000000002V2V2
R2R2D1D10000000V2V2
R2R2D1D10100000V2V2
                                                                                                                                         61
                                                                                                            A3A3
3281
                                                                                                            A3A3A3
                                                                                                                                                                 HALLETER
3291
                                                                                                                                         616161
                                                               R2D1D1D1D10000V2

R2D1D1D1D10000V2

R2R2D1D1D1D10000V2V2

R2R2R2D1D1D10000V2V2V2

R2R2R2R2D1D10000V2V2V2V2
3301L0
3311L0L0
                                                                                                                                          51616161
61616161
                                                                                                                                                                 UZUZUZUZLO
                                                                                                                                                                    113113113113
332 | LOLO
333 | LOLO
                                                                                                                                              616161
                                                                                                                                                 6161
3341U3L0
335 IU3U3L0
                                                                    RZRZRZRZDIDIOOVZVZVZVZ
RZRZRZDIDIOOOOVZVZVZ
336 H3U3LOLO
337 HU313LALALA
                                                                          R2R2D1D1000000V2V2
```

Figure 12c. Memory utilization map with X-MP-4 protocol

```
MUL3.4.64.2 MEAN ≈ 1.2

72 4
7 71 X

16 X 1
15 X X
14 X X
13 X X
12 X X
11 X X
10 X X
9 X X
8 X X
7 X X
6 X X
5 X X
4 X 4 X
3 X0X X 0
2 XXX6X20 X 4
1 XXXXXXXXXX00002

111111111
01234567890123456789
```

DELAY (CLOCKS)

Figure 12d. Granular DDF for one-port multiply code; 4 processors.

IV. EVALUATION OF CONFLICT RESOLUTION PROTOCOLS

- A. INTRODUCTION
- B. AGGRAGATE PERFORMANCE

This section considers the aggragate performance characteristics associated with the three protocols simulated, using delays averaged across all six codes.

Figure 13 and Table 4 compare delays associated with three protocols as a function of the number of processors. In all cases, $R_{\rm bp}$ = 16; thus, characteristics displayed as a function of p could as well be shown as a function of NB.

The effect of section numbering is highlighted in this comparison. Because the X-MP-2M protocol avoids the steady-state section conflict associated with neighboring accesses from the same processor, Figure 13 shows X-MP-2M protocol is favored for p = 2. This relative advantage of X-MP-2M decreases as a function of NB when the likelihood of neighboring access decreases.

Indeed, the section startup disadvantage of the X-MP-2M discussed in section III.E.3.c-d begins to dominate for p > 2; for p = 16 (NB = 256), the delays of the X-MP-2M is 71% greater than that of the X-MP-2.

The continued increase in Figure 13 of access delay for p > 4 for X-MP-2M protocol is not predictable by the theory of this report. It is surmised that, as p increases, the accesses become less patterned and this randomness increases the collision frequency. This slope would also appear with the X-MP-2 characteristic if the abovementioned steady-state delays had not increased the total delay for small p; that is, the steady-state delays decrease with p while the startup delays increase with p, giving a combined flat X-MP-2 characteristic.

Figure 13

Composite access delays of test codes $R_{\rm bp} = 16$; VL = 64

<u>:</u>

Code	X-MP-2	X-MP-2M
1-processor		
MUL ₂ MUL ₁ MUL ₃	2.4 2.7 2.2	1.7 1.7 .3
RAN [*] FFT CFD	6.0 2.8 4.2	2.1 .9 1.3
Average	4.2 3.4	1.3
2-processor		
MUL2 MUL1 MUL3 RAN FFT CFD Average	2.9 2.0 4.0 5.9 3.1 4.6 3.8	4.5 2.7 1.5 4.3 3.3 3.5 3.3
4-processor		
MUL ₂ MUL ₁ MUL ₃ RAN FFT CFD Average	3.6 3.9 1.2 6.5 3.5 3.8	7.6 5.9 1.2 7.3 5.1 4.6 5.3
16-processor		
MUL ₂ MUL ₁ MUL ₃ RAN FFT CFD Average	3.8 3.2 1.7 7.6 4.9 3.9	10.6 7.0 2.6 10.9 6.6 5.2 7.2

Table 4. Averaged access delays (clocks) for six codes with three bank conflict protocols. $R_{pb}=16$.

C. DEPENDENCE OF Dac ON Rbp

Figure 13 and Table 2 indicate what may be regarded as unacceptable delays \overline{D}_{ac} with X-MP-2M protocol, especially for 16 processors. It is possible to consider reducing \overline{D}_{ac} by using more memory banks; in this case, the question becomes the dependence of \overline{D}_{ac} on R_{bp} , when $R_{bp} > 16$.

Table 5 shows the dependence of the two codes with the largest \overline{U}_m (and the largest \overline{D}_{ac} in Table 3) on N_b with p=4, with X-MP-4 protocol. For \overline{D}_{ac} 's which may be objectionable (>10 clocks), the delay is decreased by a factor of 2.5-3.1 by doubling the number of banks. Further increase in N_b has marginal benefit.

		D _{ac} (clocks)			
	Code	N _b =32	N _b =64	N _b =128	N _b =256
4	processors				
	MUL ₂ RAN ²	21.9	10.3 18.9	3.7 7.5	2.5 4.5
8	processors				
	MUL ₂ RAN			15.2 21.3	5.2 8.4
16	processors				
	MUL ₂				20.5 21.9

Table 5. Effect of increasing number of banks

È

REFERENCES

- [1] Chen, S., J. Dongarra, and C. Hsuing, "Multiprocessing Linear Algebra Algorithms on the CRAY X-MP-2: Experiences with Small Granularity," Mathematics and Computer Science Division Technical Memorandum No. 24, Argonne National Laboratory, February, 1984.
- [2] Moore, M., R. Hiromoto, and O. Lubeck, "Experiences with the Denelsor HEP," to appear in Parallel Computing, North Holland Publisher.
- [3] Axelrod, T.S., P. F. Dubois, and P. Eltgroth, "A Simulator for MIMD Performance Prediction--Application of the S-1 MkIIa Multiprocessor," Report UCAL-88765, Lawrence Livermore National Laboratory, February, 1983.
- [4] Calahan, D.A., "Influence of Task Granularity on Vector Multiprocessor Performance," Proc. 1984 Intl. Conf. on Parallel Processing, Bellaire, MI, August 21-24, 1984; pp 278-284.
- [5] Cheung, Tony, and J. E. Smith, "An Analysis of the CRAY X-MP Memory System," Proc. 1984 Intl. Conf. on Parallel Processing, Bellaire, MI, August 21-24, 1984; pp 494-505.
- [6] Cray Research, Inc., "Cray X-MP Series Mainframe Reference Manual," HR-0032, Nov. 1982.
- [7] Buning, P.G., and J. B. Levy, "Vectorization of Implicit Navier-Stokes Codes on the CRAY-1 Computer," Dept. of Aeronautics and Astronautics, Stanford University, November 15, 1979.
- [8] Calahan, D.A., "Conflict Sensitivity of Algorithms. Part I: A CRAY X-MP Study," Report SARL #7, Dept. of Elec. Engr. and Comp. Sci., University of Michigan, March, 1985.

APPENDIX A

EXPERIMENT DESCRIPTION

EXPERIMENTAL PARAMETERS

The codes were produced by the X-MP CFT compiler from Fortran source codes. Vector length (VL) is 64 and stride is 1 for all cases.

Distinct program and data storage was used for each of the 16 processors. Code executions were initiated at irregular intervals to further randomize accesses between processors. In general, p samples were used to produce mean values with p processors.

Two global static measures of memory accesses were made to monitor their uniformity.

(a) Memory utilization. This is the fraction

$$\overline{U}_{m} = \frac{\text{Total operands and results}}{\text{Simulation time (CP's)}}$$

for the average processor; it is a measure of memory traffic for each code, and has a maximum value of 3, corresponding to the number of memory ports per processor. Table 1 shows $U_m \approx .67$ for FFT, CFD, and MUL₁.

(b) Bank utilization. Let $N_{\rm b}$ be the number of banks. There is a risk with 64-length unit-stride vectors and $N_{\rm b}$ > 64 that banks will not be equally utilized; this would create uncharacteristic delays in heavily-utilized banks. If \overline{N} is the average number of accesses per processor across all banks, and N is the standard deviation from this average, define the bank utilization

$$\overline{U}_{b} = \frac{\overline{N} - N}{\overline{N}}.$$

 $\overline{\overline{U}}_b$ = 1 indicates uniform accessing; if only 1/2 of the banks are accessed, $\overline{\overline{U}}_b$ = 1/2. Table 1 indicates .832 < $\overline{\overline{U}}_b$ < .998.

CODE DESCRIPTIONS

- (a) Fluids kernel (CFD). Taken from the vectorized code of [7], this a 32-statement single-loop Fortran kernel with an average of 3.2 64-length vector-vector operations/statement. Lack of a repetitive computational structure like FFT and MUL should make the access pattern the most random. Six buffer fetches occur in one kernel execution.
- (b) FFT kernel (FFT). This code determines multiple 8-point complex-complex FFT's. Five buffer fetches occur in one kernel execution.
- (c) Matrix-vector multiply kernel (MUL₁, MUL₂, MUL₃). The inner-loop of MUL₁ and MUL₂ has two vector reads and one write per execution. MUL₁ maintains low memory utilization ($U_m = .69$) with VL = 64 by multiplying 4 small (64 x 3) matrices in one kernel execution step; MUL₂ uses the same code with 512×2 matrices, which successively exercises the inner-loop 512/64 = 8 times, and achieves $U_m = 1.58$, a value more characteristic of a large Fortran-coded matrix multiply on the X-MP. No buffer fetches occur in consecutive executions of the kernel. The inner loop of MUL₃ has one pre-fetched vector read per inner loop execution.

Ö
T
r
į
<i>.</i> ;
-
2
Ĺ
Ž
_

	Conflicts ⁺	SC	Z Z	.141	.031	.343	.135	.036
	l Conf	<u></u>	* ~ ~	.908	.469	23.5 1.55	.840	.534
	time)	m	0	7.5	3.2	23.5	9.6	•
	(% of time)	7	66.5	9.7	15.6	28.9	13.4	11.1
	AP.	-	29.8	35.7	31.9	24.8	14.7	73.1
		•	3.7	47.1	49.3	22.8	62.3	16.8
Bank	Utilization	ام	*az	.965	986.	866.	.832	966.
Memory	ptilization	lo [®]	1.62	.653	.682	1.53	.702	.932
		Code	RAN	Le d	CPD	MUL ₂	MUL1	MUL3

*AP - average active ports

*NR - not recorded

+BC - average bank conflicts per clock
SC - average section conflicts per clock

YBPD - average buffer fetch delay per access

Code characterization; 16 processors, 256 banks, X-MP-2 protocol. Table A.

APPENDIX B

SIMULATOR VALIDATION

A. INTRODUCTION

The X-MP simulator was validated by comparison with a 16-bank X-MP-2.

Our experience with a CRAY-1 simulator indicates that we can expect to achieve a timing accuracy within 1% for typical kernels, without bank conflicts. However, since the purpose of this report is to study memory design parameter dependence on greatly-extrapolated architectures in high-conflict situations, credibility required closer validation.

In particular, it was felt necessary to validate conflicting memory reference timing more precisely. Consequently, three types of validations were made:

- (1) Clock-level accuracy was tested for short runs of highconflict memory reads and writes.
- (2) Statistical validation was made for long runs of veryhigh-conflict reads and writes.
- (3) Overall instruction timing accuracy was checked with a low-conflict linear algebra code.

B. CLOCK-LEVEL VALIDATION

1. Effect of priority switch on validation.

The X-MP-2 and X-MP-4 establish priority for simultaneous bank conflicts between p processors with a rotating priority queue that changes state every four clocks. This results in potentially 4p different timings for each multiprocessor run, corresponding to

4p initial states of the queue. The relation of the queue state to the real time clock is fixed at hardware startup, but may change as a result of shutdown; the state of the switch cannot be directly monitored.

Ò

When clock-level accuracy was to be tested, each code executed m(4p) times, where m > 4 to insure reproducability. Each of the m runs was started at the same queue state, determined by masking the real time clock in a loop before the code was entered; the loop was exited only when a desired mask was obtained, and the loop length was chosen to advance the mask one clock upon each loop execution. The next m runs of the code were made by advancing the desired mask.

2. Clock-level validation of read/write tests.

Two codes consisting of vector reads and writes with random bank starting address, random stride (< 64), and random vector length (< 64) were synchronized at the clock level and left to run for several hundred clocks (until a buffer fetch occurred) on an X-MP-2. Termination times were recorded for each of the eight initial states; in this period of time, approximately 2000 bank conflicts and 300 section conflicts were recorded. Simulated and actual run times matched precisely for all cases, after a phase adjustment associated with the hardware indetermancy of the priority queue relative to the real time clock.

3. Statistical validation of read/write tests.

In this test, processor #1 (P1) issued a series of 64-length, unit-stride vector reads against a background of random reads and

writes (see above) in a second processor (P2). The time of the read-path reservation in P1 was recorded, and the mean and standard deviation of this time determined. This data was collected for up to 64000 reads in P1 on the hardware to determine the dependence of the statistical results on the number of trials.

Without bank conflicts, this reservation time is 69 clocks. The high-conflict nature of the code in P2 is evidenced by a 107-clock mean delay (55% overhead) for both hardware and simulated timings. This validates the long-term read/write simulator performance for even high-conflict cases.

4. Overall instruction timing validation.

A low-conflict CAL LU uniprocessor factorization referenced in [1][2] was compared with simulated performance. A .27% error in simulated performance occurred with bank conflicts.

END

FILMED

11-85

DTIC